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We introduce a relaxation collision operator for a mixture of gases which satis-
fies several fundamental properties. Different BGK type collision operators for
gas mixtures have been introduced earlier but none of them could satisfy all the
basic physical properties: positivity, correct exchange coefficients, entropy
inequality, indifferentiability principle. We show that all those properties are
verified for our model, and we derive its Navier–Stokes limit by a Chapman–
Enskog expansion.
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1. INTRODUCTION

It is well known that the relevant mathematical equation for the evolution
of rarefied or high altitude gases is the Boltzmann equation.
Since this equation is rather complex, various simpler models have

been introduced and are widely used. The most famous one is the BGK
model (1, 2) which replaces the collision operator with the relaxation towards
a Maxwellian and verifies some basic properties of the Boltzmann equa-
tion. Moreover an amelioration of the BGK model, the so called ES-BGK
model (see ref. 3 for a recent complete study) gives the correct thermocon-
ductivity and viscosity coefficients in the fluid limit.
Most of these models have nevertheless been considered in the case of

a single species gas. This seems an important limitation recalling for example



that the atmosphere must at least be considered as a binary mixture of
Oxygen and Nitrogen. As recent applications where gas mixtures are con-
sidered on the basis of kinetic theory, let us mention the evaporation-con-
densation problems where species behave differently on the boundary (4) or
the mixtures in nuclear engineering. (5)

Although the extension of the Boltzmann equation to a mixture of
gases has been well known for a long time, this is not the case for the BGK
equation. In fact two of the authors of the classical one species BGK model
have also introduced a similar model for mixtures in ref. 6. Other models
were introduced thereafter, see, for example, ref. 7, whereas a generaliza-
tion of ref. 6 to various interaction potentials is obtained in ref. 8. But as
pointed out by ref. 9 all these models have an important drawback: when
all the species are identical one does not recover the equation for a single
component gas (this indifferentiability principle is verified by the Boltzmann
equation). In ref. 9 a model which verifies this principle is introduced but
the positivity is lost.
In this paper we propose a model which overcomes these difficulties,

while recovering the correct exchange coefficients. The main idea is that
instead of approximating each of the binary collision operators (between
species i and j) by a BGK-type equation (or some kind of moment closure
if the species are different in ref. 7), we introduce only one ‘‘global’’ (i.e.,
taking into account all the species j) operator for each species i.
The outline of this paper is the following: we first recall the main

properties of the Boltzmann collision operator, we then introduce our
BGK-type model and prove that it satisfies the expected properties (posi-
tivity, exchange coefficients, entropy inequality, indifferentiability prin-
ciple). We give also the Euler and Navier–Stokes systems associated with
our model.

2. NOTATIONS AND PROPERTIES OF THE BOLTZMANN

OPERATOR

2.1. The Boltzmann Equation

The Boltzmann collision operator for mixtures is written for t \ 0 and
x ¥ R3,

Qi(f, f)=C
n

k=1
Qik(fi, fk)

Qik(fi, fk)=F
R
3
F
B+
(f −if

−

k*−fifk*) Bik(n.V, |V|) dtg dn

(2.1)
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Here t is the molecular velocity, tg is an integration variable, n is an unit
vector and B+ is the semi sphere defined by n.V=0, where V is the relative
velocity

V=t−tg

The post collisional velocities are

˛t −=t−2mikmi n[(t−tg) · n]
t −g=tg+

2mik
mk
n[(t−tg) · n]

(2.2)

and the reduced mass is

mik=mimk/(mi+mk) (2.3)

We recall that these rules are dictated by the conservation laws for
momentum and energy

mit+mktg=mitŒ+mkt
−

g

mi |t|2+mk |tg |2=mi |tŒ|2+mk |t
−

g |
2

(2.4)

We also recall that the micro-collision operator

Tn: (t, tg)W (tŒ, t
−

g)

is an involution

Tn p Tn=I6×6

in other words (tŒ)Œ=t, (t −g)Œ=tg. This property and direct computations
show the following idendities, which are fundamental for the study of the
properties of the collision operator,

dt dtg=dtŒ dt
−

g

n · (t−tg)=−n· (tŒ−t
−

g)

|t−tg |=|tŒ−t
−

g |

(2.5)
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2.2. Macroscopic Quantities

We introduce notations for macroscopic quantities that will be used
later on, n (i) is the number density, r (i) the density, v (i) the average velocity,
E (i) the energy per unit volume, e (i) the internal energy per particle, T (i) the
temperature of species i.

n (i)=F
R
3
fi dt, r (i)=min (i)

n (i)v (i)=F
R
3
tfi dt

E (i)=
1
2
r (i)|v (i) |2+n (i)e (i), e (i)=

3
2
kBT (i)

e (i)=
mi
2n (i)

F
R
3
|t−v (i)|2 fi dt

Then, we also have global quantities for the mixture, the total density r,
the number density n, the mean velocity v, the energy per unit volume E
and ne the internal energy per unit volume.

r=C
n

k=1
r (i), n=C

n

k=1
n (i) (2.6)

rv=C
n

k=1
r (i)v (i) (2.7)

ne+
r

2
|v|2=E=C

n

k=1
E (i) (2.8)

2.3. Indifferentiability Principle

We call indifferentiability principle the following property:
When all the masses mi and cross-sections Bik are identical, the total

distribution f=; fi obeys the single species Boltzmann equation.
This property is satisfied by bilinearity of the collision operator.
Notice also that the macroscopic quantities associated to f are n, v, e.

2.4. Conservation Laws and Transfer Coefficients

For multispecies fluids, we have to keep in mind that for each species
the usual mass, momentum and energy are not necessarily conserved. In
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the present model, we suppose that there is no chemical reaction between
the species, so that the mass of each species is conserved,

F
R
3
Qi dt=0

Each species may nevertheless exchange momentum and energy with the
others. The exchange relations can be computed exactly in the case of
maxwellian particles, and the computations are left in Appendix 1. See also
ref. 8 for some extensions to other kind of particles.
One obtains

F
R
3
mitQi dt=C

n

k=1
2mikqikn(i)n(k)[v(k)−v(i)]

F
R
3

mi
2
|t−v(i)|2 Qi dt=C

n

k=1
2mikqikn(i)n(k)

2
mi+mk
1e(k)− e(i)+mk

|v(k)−v(i)|2

2
2

where mik is the reduced mass given in (2.3), and the interaction coefficient
qik is defined by

qik=F
B+
(cos w)2 B̄ik(w) dw (2.9)

where B̄ik is related to the interaction potential between species i and k.

Remark 2.1. The interaction coefficient qik is smaller than the
collision frequency nik between species i and k, defined by

nik=F
B+
B̄ik(w) dw (2.10)

Especially for non cut-off models, nik might be infinite while qik remains
finite.

2.5. Equilibrium

The equilibrium in the mixture is obtained when all Qi=0. Then a
classical result is that every Qij=0. In Appendix 2 we give a proof of the
following:
If for two species i and j Qij=Qji=0 then fi and fj are Maxwellians

with common velocity and temperature.
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The conclusion is that at global equilibrium, all distributions are

fi=n(i) 1
mi
2pkBT
23/2 exp 1−mi |t−v|

2

2kBT
2 (2.11)

for some common velocity v and temperature T.

2.6. Entropy Inequality

In the case of a mixture, the entropy inequality (H theorem) is

C
i
F Qi ln fi dt [ 0

3. THE BGK-TYPE MODEL

Here, we propose a relaxation model which satisfies the properties

• the non-negativity of densities is satisfied,

• the exchange relations are those of the Maxwellian particle model,

• the ‘‘indifferentiability principle’’ holds,

• the equilibrium distributions are Maxwellians with common veloci-
ties and internal energies,

• the H theorem holds true.

3.1. Formulation of the BGK-Type Model

The model is built as follows. The relaxation occurs toward a
maxwellian distributionMi, i.e.,

“

“t
fi+t ·Nxfi=Qi :=ni[Mi−fi] (3.1)

with the notation

Mi=n (i) 1
mi
2pkBTi
23/2 exp 1−mi |t−vi |

2

2kBTi
2 (3.2)

where ni is a collision frequency and its choice is crucial (see Theorem 3.1
below).
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The macroscopic parameters vi and ei=
3
2 kBTi are chosen to recover

the exchange relations. This gives

minivi=miniv (i)+C
n

k=1
2mikqikn (k)[v (k)−v (i)] (3.3)

niei=nie (i)−
mini
2
|vi−v (i)|2+C

n

k=1
2mikqikn (k)

2
mi+mk

×1 e (k)− e (i)+mk
|v (k)−v (i)|2

2
2 (3.4)

Theorem 3.1. The internal energy ei is positive as soon as

ni \ C
n

k=1
qikn (k) (3.5)

In particular the model is well defined with the total collision frequency
(see Remark 2.1)

ni=C
n

k=1
nikn (k)

Proof of Theorem 3.1. The first condition for the positivity of ei is,
taking the coefficient in front of e (i) in (3.4),

ni \ C
n

k=1
2mikqikn (k)

2
mi+mk

(3.6)

Next we have to check

C
n

k=1
2mikqikn (k)

2mk
mi+mk

|v (k)−v (i)|2− nimi |vi−v (i)|2 \ 0 (3.7)

For this we use the formula for the exchange of momentum

nimi(vi−v (i))=C
n

k=1
2mikqikn (k)[v (k)−v (i)] (3.8)

and a Cauchy–Schwarz inequality

1C ab2
2

[C a2 C b2
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Taking a=`2mikqikn (k)
mi+mk
2mk

and b=`2mikqikn (k)
2mk
mi+mk

[v (k)−v (i)] one
obtains

|nimi(vi−v (i))|2 [ C
n

l=1
2milqiln (l)

mi+ml
2ml

C
n

k=1
2mikqikn (k)

2mk
mi+mk

|v (k)−v (i)|2

The inequality (3.7) is satisfied if

C
n

k=1
2mikqikn (k)

2mk
mi+mk

|v (k)−v (i)|2 11− 1
mini

C
n

l=1
2milqiln (l)

mi+ml
2ml
2 \ 0

which gives

mini \ C
n

k=1
2mikqikn (k)

mk+mi
2mk

and the second condition

ni \ C
n

k=1
qikn (k) (3.9)

To conclude, remark that

4mik
mi+mk

=
4mimk
(mi+mk)2

[ 1

so that the first condition is always verified when the second one is.
The last proposition of the theorem is only a consequence of the

inequality qik [ nik, see Remark 2.1.

3.2. Indifferentiability Principle

Proposition 3.2. Suppose that all masses are equal to m, all transfer
coefficients are equal to q and choose the collision rates ni all equal to
n=q; k n (k)=qn. Then the total distribution f=; k fk verifies a BGK
equation with collision rate n. Thus the indifferentiability principle holds.

Proof of Proposition 3.2. We first rewrite (3.3) in this case and
obtain

mnvi=mnv (i)+C
n

k=1
mqn (k)[v (k)−v (i)]
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Recalling the choice of n, one obtains

rvi=C
n

k=1
r (k)v (k)

so that each velocity vi is equal to the ‘‘mean’’ velocity v (see Section 2.2).
Next, the same computations for the energy give

nei=ne (i)−
mn
2
|v−v (i)|2+C

n

k=1
mqn (k)

1
m

×1 e (k)− e (i)+m |v
(k)−v (i)|2

2
2

nei+
mn
2
|v−v (i)|2=C

n

k=1
n (k) 1 e (k)+m |v

(k)−v (i)|2

2
2

Since

C
n

k=1
n (k)v (k)v (i)=nvv(i)

we obtain

n 1 ei+
m
2
|v|22=C

n

k=1
n (k) 1 e (k)+m

2
|v (k)|22

This means that the internal energies ei are identical to e. To conclude, we
can now write

Mi=n (i) 1
m
2pkBT
23/2 exp −m |t−v|

2

2kBT

M=C
i
Mi=n 1

m
2pkBT
23/2 exp −m |t−v|

2

2kBT

Summing Eqs. (3.1) gives

“

“t
f+t ·Nxf=Q :=n[M−f]

3.3. Equilibrium

At global equilibrium, it is evident that all distribution functions are
Maxwellians, but it is not so evident that velocities and internal energies
are all the same.
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Proposition 3.3. The equilibrium distributions for the model (3.1)
are Maxwellians with common velocity and internal energy.

Proof of Proposition 3.3. From the definition of vi (3.3) we obtain

vi=
1
mini

C
n

k=1
2mikqikn (k)v (k)+11−

1
mini

C
n

k=1
2mikqikn (k)2 v (i)

This means that the velocity vi is a strictly convex combination of the
velocities of the species.
At equilibrium v (i)=vi and each velocity is a strictly convex combina-

tion of all the others, it is easy to conclude that the v (i) (and thus vi) are all
equal.
Then rewriting in this case (3.4)

niei=nie (i)+C
n

k=1
2mikqikn (k)

2
mi+mk

(e (k)− e (i))

we obtain again that ei is a strictly convex combination of the internal
energies, and the same argument applies.

3.4. Entropy Inequality

We begin with a lemma

Lemma 3.4. The following inequality holds

C
n

i=1
n (i)ni ln ei \ C

n

i=1
n (i)ni ln e (i)

To prove this inequality, let us recall the formula (3.4) for ei

ni 1 ei+
mi
2
|vi−v (i)|2− e (i)2

=C
n

k=1
2mikqikn (k)

2
mi+mk
1 (e (k)− e (i))+mk

|v (k)−v (i)|2

2
2

The contribution of the velocity terms is positive (with the condition on
(3.5) on ni) and one obtains

ei \
1
ni

C
n

k=1
2mikqikn (k)

2
mi+mk

(e (k)− e (i))+e (i)
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The right hand side is a convex combination of the energies. Because the
logarithm is a concave increasing function, we can write

ln ei \
1
ni

C
n

k=1
2mikqikn (k)

2
mi+mk

(ln e (k)− ln e (i))+ln e (i)

Then

C
n

i=1
n (i)ni ln ei \ C

n

i=1
C
n

k=1
2mikqikn (i)n (k)

2
mi+mk

(ln e (k)− ln e (i))

+C
n

i=1
n (i)ni ln e (i)

It is straightforward to verify that the double sum vanishes (exchanging the
indices and using the symmetry of q) and the result follows.

Theorem 3.5. The following entropy inequalities hold true

C
n

k=1
F
R
3
nkMk lnMk dt [ C

n

k=1
F
R
3
nkM (k) lnM (k) dt

C
n

k=1
F
R
3
nkM (k) lnM (k) dt [ C

n

k=1
F
R
3
nkfk ln fk dt

with M (i)=n (i)( mi
2pkBT(i)

)3/2 exp[−mi |t−v
(i)|2

2kBT(i)
], and the equality holds only in

the situation of a global equilibrium. Solutions of (3.1) satisfy the H
theorem

“

“t
C
n

k=1
F
R
3
fk ln fk dt+divx C

n

k=1
F
R
3
t fk ln fk dt [ 0

Proof of Theorem 3.5. The first inequality can be written, after
explicit calculations,

C
n

k=1
nkn (k) ln 5n (k) 1

mk
2pkBTk
23/26−n (k)

[ C
n

k=1
nkn (k) ln 5n (k) 1

mk
2pkBT (k)
23/26−n (k)
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which is also equivalent to

C
n

k=1
nkn (k) ln Tk \ C

n

k=1
nkn (k) ln T (k)

a consequence of Lemma 3.4.
The second inequality is in fact true term by term:

F
R
3
M (k) lnM (k) dt [ F

R
3
fk ln fk dt

is the H theorem for the standard monospecies BGK equation.
To conclude

“

“t
C
n

k=1
F
R
3
fk ln fk dt+divx C

n

k=1
F
R
3
tfk ln fk dt

=C
n

k=1
F
R
3
nk(Mk−fk) ln fk dt

Denoting H(x)=x ln x−x and using the convexity relation

HŒ(f)(g−f) [H(g)−H(f)

it is sufficient to prove

C
n

k=1
F
R
3
nk(H(Mk)−H(fk)) dt [ 0

C
n

k=1
F
R
3
nk(H(Mk)−H(M(k))+H(M(k))−H(fk)) dt [ 0

This is a consequence of the first inequalities.

4. CHAPMAN–ENSKOG EXPANSION

This section is devoted to the derivation of the Navier–Stokes system
in the compressible regime (we refer to ref. 10 for other possible regimes in
the one species case and ref. 11 for a complete discussion and references).
In order to derive the Navier–Stokes system, we assume there is a

small parameter l such that every ni=O(
1
l) and we study the expansion of

macroscopic quantities in term of l.
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Proposition 4.1. The solutions of (3.1) verify the system of n+4
equations

“tr
(i)+div(r (i)v)=−div(Ji) (4.1)

“t(rv)+div(P+rv é v)=0 (4.2)

“tE+div(Ev+P·v+q)=0 (4.3)

where r, v, and E are given by (2.6), (2.8), (2.8), and

Ji=mi F
R
3
fi(t−v) dt=r (i)(v (i)−v) (4.4)

P=C
i
F
R
3
mifi(t−v) é (t−v) dt (4.5)

q=C
i
F
R
3
mifi(t−v)

|t−v|2

2
dt (4.6)

The system is closed in the first order of l as a system of the n+4
unknowns r (i), v, T by the following relations:

Ji=− C
n

k=1
Lik

Nx(n (k)kBT)
r (k)

+O(l2) (4.7)

P=nkBT Id−g(Nxu+(Nxu) t−
2
3
(div u) Id)+O(l2) (4.8)

q=
5
2
kBT C

i

Ji
mi
−oNxT+O(l2) (4.9)

where L is a symmetric matrix whose coefficients depend only upon the
masses and densities, g and o are the viscosity and thermal conductivity
coefficients

g=kBT C
i

n (i)

ni
(4.10)

o=
5
2
k2BT C

i

n (i)

mini
(4.11)
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Remark 4.2. In classical manuals (see, for example, ref. 12), Nx(n
(k)kBT)
r(k)

is denoted by the x derivative at constant temperature of the chemical
potential:

kBT
mk
1 ln n (k)−3

2
ln
2kBT
mk
2

The symmetry of L is also called Onsager relation.

Remark 4.3. The system we obtain is exactly the same as the system
obtained in ref. 9. In the case of the Boltzmann equation with Maxwellian
particles, one obtains the same system, but with different coefficients g, o
and Lik (see ref. 12).

Proof of Proposition 4.1. The system can always be written by
integration of the kinetic equation (3.1) and is the conservation of the mass
of each species, the total momentum and the total energy.
Thus we aim to prove the closure relations, this is done in the following

subsections.

4.1. Euler Limit

At equilibrium the Euler system holds for the densities, common
velocity and common temperature defined by (2.6), (2.8), (2.8),

“tr
(i)+div(r (i)v)=0 (4.12)

“t(rv)+div(nkBT Id+rv é v)=0 (4.13)

“tE+div((E+nkBT) v)=0. (4.14)

4.2. First Order Expansion of the Distribution Function

At 0 order in l, the system is at equilibrium and all fi are Maxwellians
with the same velocity and temperature. We can thus write

fi=Ma i+O(l) (4.15)

where Ma i is the maxwellian with moments n (i), v, T (remember from the
definition (2.6), (2.8), (2.8) that v and T are the averaged quantities of the
mixture).
Now, rewriting (3.1)

fi=Mi−
1
ni
(“tfi+t ·Nxfi) (4.16)
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and using (4.15) we can write

fi=Mi−
1
ni
(“tMa i+t ·NxMa i)+O(l2) (4.17)

4.3. First Order Expansion of Partial Momenta

Integrating (4.17) over mit dt gives

minin (i)v (i)=minin (i)vi−mi F
R
3
(“tMa i+t ·NxMa i) t dt+O(l2) (4.18)

To go further we need a preliminary computation

Lemma 4.4.

mi F
R
3
(“tMa i+t ·NxMa i) t dt=Nx(n (i)kBT)−

r (i)

r
Nx(nkBT)

Proof of Lemma 4.4. This quantity I can be computed explicitely,

I=“t(r (i)v)+div(n (i)kBT Id+r (i)v é v)

rI=rNx(n (i)kBT)+rv“tr (i)+rr (i)“tv+r(v é v) Nxr (i)+rr (i) div(v é v)

Subtracting r (i) times Eq. (4.13) we obtain

rI=rNx(n (i)kBT)−r (i)Nx(nkBT)+rv“tr (i)−r (i)v“tr+r(v é v) Nxr (i)

−r (i)(v é v) Nxr

Also, rewriting (4.13), it is easy to check

v“tr (i)+(v é v) Nxr (i)=−vr (i) div v

and the same formula is true for r (because the total mass is conserved as
well). Then

rI=rNx(n (i)kBT)−r (i)Nx(nkBT)−rvr (i) div v+r (i)vr div v

and the result follows.
Now we rewrite (4.18) and use the lemma, this rises

−minin (i)v (i)+minin (i)vi=I=Nx(n (i)kBT)−
r (i)

r
Nx(nkBT)+O(l2) (4.19)
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The right hand side can be written

I=r (i)
Nx(n (i)kBT)
r (i)

−
r (i)

r
C
n

k=1
r (k)

Nx(n (k)kBT)
r (k)

(4.20)

Therefore, denoting by W the symmetric matrix

Wik=r (i)dik−
r (i)r (k)

r

and, for simplicity

ak=
Nx(n (k)kBT)
r (k)

we have

I=C
n

k=1
Wikak (4.21)

The left hand side of (4.19) can be written, using the definition of vi in (3.3):

I=n (i) C
n

k=1
2mikqikn (k)(v (k)−v (i))

I=C
n

k=1

2qik
mi+mk

r (i)r (k) 1 Jk
r (k)
−
Ji
r (i)
2

So that we can write

I=C
n

k=1
MikJk (4.22)

whereM is the matrix defined by:

Mik=
2qikr (i)

mi+mk
−1 C

n

kŒ=1

2qikŒr (kŒ)

mi+mkŒ
2 dik

Now we conclude from the two expressions (4.22) and (4.21) that

M·J=W ·a (4.23)
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At this point it is useful to notice that the matrix M is not necessarily
invertible. In fact, denoting for simplicity by Aik the symmetric coefficient

Aik=
2qik
mi+mk

the matrixM is the following

Mik=− C
kŒ ] i
AikŒr (kŒ) if i=k

Mik=Aikr (i) if i ] k

We want to use the following classical property:
The matrices T with the following property

|Tii | > C
k ] i
|Tki | for every i (4.24)

are always inversible.
Here we are in the case of

|Mii |=C
k ] i
|Mki | for every i

Mii < 0, Mik > 0 if i ] k

Thus, taking a small parameter 0 < o <minimumi ] k Mik, the matrix M2
defined by

M2 ik=Mik−o

verifies the property (4.24) and is invertible.
Now we remark that

C
i
Ji=0

which is a straightforward consequence of the definition of Ji and v and
expresses the conservation of total momentum.
It is easy to check from this that adding a constant to M everywhere

does not change the result,

M2 · J=M·J=W ·a
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and we conclude by the invertibility ofM2 that

J=(M2 −1W) ·a

This prove the relation (4.7) with L=−M2 −1W.
To prove the Onsager relation, that is the symmetry of L=−M2 −1W

we first prove thatM·W is symmetric.

(M·W)ij=C
n

k=1

11Aikr (i)− C
n

kŒ=1
AikŒr (kŒ)dik 2 1r (k)dkj−

r (j)r (k)

r
22

(M·W)ij=Aijr (i)r (j)−1 C
n

kŒ=1
AikŒr (kŒ)2 r (j)dij−C

k
Aik
r (i)r (j)r (k)

r

+C
kŒ
AikŒ
r (kŒ)r (j)r (i)

r

(M·W)ij=Aijr (i)r (j)−1 C
n

kŒ=1
AikŒr (kŒ)2 r (j)dij

which is symmetric.
Next we remark that o ·W=0 (where o denotes here the matrix with

all terms equal to o). This is a simple computation:

(o ·W)ij=C
k
o 1r (j)dkj−

r (j)r (k)

r
2=or (j)−or (j); k r

(k)

r
=0

We thus conclude that M2 ·W=M·W is symmetrical. Recalling that W is
also symmetrical, and denoting byM2 t the transposed matrix ofM2 ,

W ·M2 t=M2 ·W

gives

M2 −1 ·W=W · (M2 t)−1=(M2 −1 ·W) t

And we conclude thatM2 −1 ·W is symmetrical, and thus L is symmetrical.

4.4. First Order Expansion of the Total Stress and Heat Flux

The expansion of P is obtained in a similar way. From (4.17) one
obtains

P=P̄−C
i

mi
ni

F
R
3
(“tMa i+t ·NxMa i)(t−v) é (t−v) dt+O(l2)
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where

P̄=C
i
F
R
3
miMi(t−v) é (t−v) dt

A computation (see, for example, ref. 3 for a similar computation) gives

mi F
R
3
(“tMa i+t ·NxMa i)(t−v) é (t−v) dt

=n (i)kBT(Nxu+(Nxu) t−
2
3 (div u) Id)

and

P=P̄−g(Nxu+(Nxu) t−
2
3 (div u) Id)+O(l

2) (4.25)

where g is the viscosity coefficient

g=kBT C
i

n (i)

ni

Now we compute P̄

P̄=C
i
(23 n

(i)ei Id+r (i)(vi−v) é (vi−v))

Since at equilibrium vi=v, we have vi−v=O(l) and thus we deduce that
P̄ is diagonal at first order,

P̄=1C
i

2
3 n
(i)ei 2 Id+O(l2)

Now we can take the trace in (4.25), and remark that the viscosity term has
a nul trace. Thus we have

C
i
n (i)ei=C

i
n (i)e (i)+O(l2)

From the definition of e, we obtain

ne=C
i

1n (i)e (i)+r
(i)

2
|v (i)−v|22=C

i
n (i)e (i)+O(l2)
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and we conclude that

P̄=2
3 ne Id+O(l

2)

P=nkBT Id−g(Nxu+(Nxu) t−
2
3 (div u) Id)+O(l

2) (4.26)

For the heat flux, one obtains in a similar way

q=q̄−oNxT+O(l2) (4.27)

where o is the heat flux

o=
5
2
k2BT C

i

n (i)

mini

and

q̄=C
i
F
R
3
miMi(t−v)

|t−v|2

2
dt

q̄=C
i
F
R
3
miMi(t−vi+vi−v)

|t−vi+vi−v|2

2
dt

Since Mi is an even function of (t−vi), in the expansion the terms of first
and third order in (t−vi) vanish, and the term of zero order is
r (i) |vi−v|3=O(l3). We thus obtain:

q̄=C
i
(1+23 ) n

(i)ei(vi−v)+O(l2)

To conclude, we use ei=e+O(l) and n (i)(vi−v)=
Ji
mi
=O(l), this gives

q̄=C
i

5
3
e
Ji
mi
+O(l2)

and finally

q=
5
2
kBT C

i

Ji
mi
−oNxT+O(l2) (4.28)
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5. APPENDIX 1

We compute here the exchange coefficients which arise in the various
‘‘conservation laws’’ that can be deduced from the Boltzmann equation

“

“t
fi+t ·Nxfi=Qi(f, f)

As usual, these are obtained in multiplying the Boltzmann equation by 1,
t and |t|2 and integrating dt. We first obtain, thanks to (2.5), the conser-
vation of mass

“

“t
n (i)+div(n (i)v (i))=0 (5.1)

The second balance law concerns momentum and contains exchange terms.
For maxwellian molecules, i.e.,

Bik(n.V, |V|)=B̄ik(n.V/|V|)

with B̄ik an even function, we find

“

“t
(r (i)v (i))+div S (i)=C

n

k=1
2mikqikn (i)n (k)[v (k)−v (i)] (5.2)

where qik=qki is a proportionality factor between forces

qik=F
B+

1n.V
|V|
22 B̄ik 1

n.V
|V|
2 dn (5.3)

To see this, we just compute the righthand side which is given, thanks to
the relations (2.5), by

mi F
R
3
F
R
3
F
B+
t(f −if

−

k*−fifk*) B̄ik(n.V/|V|) dt dtg dn

=mi F
R
3
F
R
3
F
B+
fifk*(tŒ−t) B̄ik(n.V/|V|) dt dtg dn

=2mik F
R
3
F
R
3
F
B+
fifk*n[(tg−t) · n] B̄ik(n.V/|V|) dt dtg dn

=2mik F
R
3
F
R
3
F
B+
fifk*(tg−t)(n.V/|V|)2 B̄ik(n.V/|V|) dt dtg dn

and the result follows.
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As for the energy balance, we obtain

“

“t
E (i)+div q (i)=C

n

k=1
2mikqikn (i)n (k) 5(v (k)−v (i)) · v (i)

+
2

mi+mk
1 e (k)− e (i)+mk

|v (k)−v (i)|2

2
26 (5.4)

The derivation is again based on the use of relations (2.5). We have

mi F
R
3
F
R
3
F
B+

|t|2

2
(f −if

−

k*−fifk*) B̄ik(n.V/|V|) dt dtg dn

=mi F
R
3
F
R
3
F
B+
fifk* 1

|tŒ|2

2
−
|t|2

2
2 B̄ik(n.V/|V|) dt dtg dn

=2mi F
R
3
F
R
3
F
B+
fifk* 51

mik

mi
22 |(tg−t) · n|2+

mik

mi
t · n[(tg−t) · n]6

×B̄ik(n.V/|V|) dt dtg dn

=2miqik F
R
3
F
R
3
fifk* 51

mik

mi
22 |tg−t|2+

mik

mi
t · (tg−t)6 dt dtg

=2miqikn (i)n (k) 51
mik

mi
22 1 |v (k)−v (i)|2+2 e

(k)

mk
+2
e (i)

mi
2

+
mik

mi
51 (v (k)−v (i)) · v (i)−2 e

(i)

mi
266

and the result follows from algebraic relations between mi and mik.

6. APPENDIX 2

This appendix is dedicated to the proof of the equilibrium result of
Section 2.5, following the ideas of ref. 13.
We first recall the notations (2.2)

˛t −=t−2mijmi n[(t−tg) · n]
t −g=tg+

2mij
mj
n[(t−tg) · n]

(6.1)
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We also recall that the micro-collision operator

Tn: (t, tg)W (tŒ, t
−

g)

is an involution and

dt dtg=dtŒ dt
−

g (6.2)

Proposition 6.1. We suppose that fi and fj are distributions such
that

fifj*=f
−

if
−

j*, fjfi*=f
−

jfi*

for all n in B+. Then fi and fj are Maxwellians with same velocity and
temperature.

Proof of Proposition 6.1. We denote by gi, gj the Fourier transforms
offi, fj.
With the above hypothesis we can write

gi(k) gj(kg)=F fi(tŒ) fj(t −g) e i(k.t+kg .tg) dt dtg

Now we change the notation tŒ by t, use the involution property and
dtŒ dt −g=dt dtg to obtain

gi(k) gj(kg)=F fi(t) fj(tg) e i(k.tŒ+kg .tŒg) dt dtg

=F fi(t) fj(tg) e i(k.t+kg .tg)− i
1 2mij
mi
k−

2mij
mj
kg2 · n(t−tg) · n dt dtg

Now we can consider this as a formula in n (this is true for all n) and make
a Taylor expansion around n0 where n0 is orthogonal to

2mij
mi
k− 2mijmj kg. We

write n=n0+g and the first term of the Taylor expansion is

0=F fi(t) fj(tg) e i(k.t+kg .tg)i 1
2mij
mi
k−
2mij
mj
kg 2 ·g(t−tg) · n0 dt dtg

This gives

F fi(t) fj(tg) e i(k.t+kg .tg)(t−tg) · n0 dt dtg=0, -n0 +
k
mi
−
kg
mj
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wich also reads

n0 · (Nk gi gj*−Nkg gi gj*)=0, -n0 +
k
mi
−
kg
mj

(6.3)

Now, by galilean invariance, we may assume that the mean velocity of fi
vanishes, that is

F fi(t) t dt=0=Ngi(0)

Then taking k=0 in (6.3) gives for all kg

gi(0) n0 ·Nkg gj*=0, -n0 + kg

This means that Nkg gj* is proportionnal to kg, and thus that gj is a radial
function

gj*=gj(|kg |2)

Now, if kg=|kg | n where n is a unit vector, Nkg gj* is parallel to n, and
taking kg=0, Nkg gj*(0) is parralel to any unit vector thus vanishes,

Nkg gj*(0)=0

Remark that this gives the first result that fj has the same zero bulk
velocity as fi.
We can now take kg=0 in (6.3) to obtain gi=gi(|k|2).
From now on we denote |k|2=r and |kg |2=rg, and compute from (6.3):

k
g −i(r)
gi(r)

−kg
g −j(rg)
gj(rg)

is orthogonal to n0 and thus proportionnal to

1
mi
k−
1
mj
kg

Thus one obtains that

mj
g −j(rg)
gj(rg)

=mi
g −i(r)
gi(r)

(6.4)
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We conclude that g
−

i
gi
=(ln(gi))Œ is independant of r, so that

gj(k)=Cje−aj |k|
2

and in the same way

gi(k)=Cie−ai |k|
2

Moreover we also deduce from (6.3) that

aj=
mi
mj
ai

Then since the Fourier transform of a gaussian law is a gaussian law, we obtain
thatfi andfj areMaxwellians with zero velocity and same temperature.
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d’Euler multiespèces, CEA Report (2001).

6. E. P. Gross and M. Krook, Model for collision processes in gases: Small-amplitude
oscillations of charged two-component systems, Phys. Rev. 102:593 (1956).

7. L. Sirovich, Kinetic modeling of gas mixtures, Phys. of Fluids 5:908–918 (1962).
8. E. Goldman and L. Sirovich, Equations for gas mixtures, Phys. of Fluids 10(9):1928–1940
(1967).
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